掃碼下載APP
及時接收考試資訊及
備考信息
ACCA P3考試:Time Series Analysis
1. Uses
The use of time series models is twofold:
To obtain an understanding of the underlying forces and structure that produced the observed data point;
To fit a model and proceed to forecasting, monitoring or even feedback and feed-forward control.
Time series analysis is used for many applications, such as:
Economic forecasting; Stock market analysis;
Sales forecasting; Process and quality control;
Budgetary analysis; Inventory studies and workload projections.
2. Components
Most time series patterns can be described in terms of two basic components: trend and seasonal variation (“seasonality”).
Trend describes a direction of change in the data that tends to occur at a similar rate over the short run. Within a long-term trend, data may change at varying rates or even reverse direction for short periods before continuing at the trend rate. After introducing a new product, for example, a firm may see sales grow slowly, followed by exponential growth as the new product catches on.
Seasonality describes calendar-related effects such as sales preceding certain holidays, air miles flown during vacation seasons, etc.
Cyclicality is another component. It arises when data plots in a repeating pattern around the trend line over a period lasting more than one year (e.g. economic expansion and contraction). Business cycles are notoriously difficult to forecast, so they are often combined with trend effects into “trend-cycle” analysis.
Trend and seasonality components may coexist in real-life data. For example, sales of a company can grow over years but still follow consistent seasonal patterns (e.g. 25% of sales each year are made in December and only 4% in August). In many cases it is necessary to establish a trend for a series and then adjust each new data point for seasonality. This may be done monthly, quarterly or semi-annually (depending on the review period over which management will compare actual results to forecast). Various methods exist for removing seasonal and cyclical noise from data and to make forecasts:
Random walk: Next period's prediction is based on the latest actual. Because the data move up and down due to non-trend factors, however, this method may place too much emphasis on the latest actual result.
Simple moving average: Next period's prediction is based on the latest moving average of n values for the series.
Weighted moving average:* Weights are assigned to observations, such that more recent results may be given more weight than older results.
This still suffers from other problems with the simple moving average method, but can be another improvement over the random walk.
It may be better to select equal weights for highly variable series.
Exponential smoothing: Weights are assigned to last period's actual result using the “smoothing constant” and to last period's forecast amount (1 minus the smoothing constant). Because the forecast value for the current period is the weighted actual value plus weighted forecast value of the prior period, this method implicitly gives weight to all actual values in determining the next period forecast.
Copyright © 2000 - www.sgjweuf.cn All Rights Reserved. 北京正保會計科技有限公司 版權所有
京B2-20200959 京ICP備20012371號-7 出版物經營許可證
京公網安備 11010802044457號
套餐D大額券
¥
去使用 主站蜘蛛池模板: 亚洲伊人情人综合网站| 亚洲精品一区二区妖精| 国产午夜福利视频在线观看| 色欧美片视频在线观看| 亚洲乱码国产乱码精品精| 亚洲精品综合第一国产综合| 海兴县| 国产亚洲亚洲国产一二区| 亚洲成在人线AV品善网好看| 国产乱人偷精品人妻a片| 国产视频最新| 国产极品尤物粉嫩在线观看| 在线观看成人永久免费网站| 国产精品免费中文字幕| 久爱无码精品免费视频在线观看| 国产精品剧情亚洲二区| 大香伊蕉在人线国产av| 成人午夜福利精品一区二区| 美女禁区a级全片免费观看| 18禁无遮挡啪啪无码网站| 国产亚洲色视频在线| 免费看婬乱a欧美大片| 一本大道久久东京热AV| 怀化市| 国产成人精品一区二区无| 中国女人高潮hd| √天堂资源地址在线官网| 亚洲欧美国产精品久久久久久久| av一区二区中文字幕| 国产成人精品无码专区| аⅴ天堂中文在线网| 国内极度色诱视频网站| 亚洲中文久久久久久精品国产| 国产成人精品无码专区| 成人精品一区二区三区四| 精品国产乱码久久久久APP下载| 亚洲中文字幕无码爆乳| 日韩精品一区二区蜜臀av| 久久综合亚洲鲁鲁九月天| 精品无码国产自产拍在线观看蜜 | 狠狠躁夜夜躁人人爽天天天天|